Experimental Investigation of the Trigger Problem in Magnetic Reconnection
نویسندگان
چکیده
Magnetic reconnection is a fundamental process in plasma physics, which involves the often explosive release of magnetically stored energy in both space and laboratory plasmas. In order for this sudden release of energy to occur, there must be a period of slow reconnection, in which magnetic stress accumulates in the system, followed by a quick transition to fast reconnection. The question of what causes this transition is known as the ‘trigger problem’ and is not well understood. We address the trigger problem using the Versatile Toroidal Facility (VTF) at MIT, which we operate in the strong magnetic guide field regime. The resulting reconnection occurs in spontaneous events, in which there is a transition to fast reconnection. The reconnection in these events is asymmetric: it begins at one toroidal location and propagates toroidally in both directions. The spontaneous onset is facilitated by an interaction between the x-line current channel and a global mode, which breaks axisymmetry. We model the onset using an empirical Ohm’s law and current continuity, which is maintained by ion polarization currents associated with the mode. The model reproduces the exponential growth of the reconnection electric field, and the model growth rate agrees well with the experimentally measured growth rate. We begin, however, by discussing reconnection in the collisional regime and the effect of neutral gas on plasma flows. We perform experiments which are relevant to plasmas at the edge of tokamaks, but may also be applicable to reconnection in the solar photosphere and the interstellar medium, where the ionization fraction is low. In these experiments, a plasma filament propagates across a magnetic field in a background of neutral atoms. The filament motion is driven by charge separation in an inhomogeneous magnetic field, and this drive is balanced by collisional damping. The filament propagation and internal structure are described in detail. Thesis Supervisor: Jan Egedal Title: Assistant Professor
منابع مشابه
Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملA numerical study of forced magnetic reconnection in the viscous Taylor problem
Two-dimensional, nonlinear magnetohydrodynamical simulations are used to investigate the so-called Taylor problem, in which a small amplitude boundary perturbation is suddenly applied to a tearing stable, slab plasma equilibrium—the perturbation being such as to drive magnetic reconnection within the plasma. This type of reconnection, which is not due to an intrinsic plasma instability, is gene...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملLaboratory observation of localized onset of magnetic reconnection.
Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one ...
متن کاملAn Experimental Investigation of Magnetized Water Effect on Formation Damage
In oil industries, water injection into oil reservoirs for pressure maintenance, oil displacement, and oil recovery is a common technique. Formation damage during water injection is a major problem in this process. Formation damage from the incompatibility of formation water (FW) and injection water (IW) causes a reduction in the permeability around the injection wells. Therefore, it is necessa...
متن کامل